The RF Two-Wire Level Control produces a 7.5 mA (± 1.5 mA) or 14.5 mA (± 2 mA) current to indicate liquid presence/absence at the sensor. A sensor attached to the control acts as an antenna to transmit the process material level to the electronics.

The Failsafe Select switch determines the output of the unit when the process is touching the probe. A green LED on the control indicates 7.5 mA (±1.5 mA) output. A yellow LED on the control indicates 14.5 mA (± 2 mA) output.

The RF Two-Wire level Control can be mounted with the sensor in the process (integral units K housing), or up to 150' (45m) from the sensor in the remote configuration (R housing).

The RF Two-Wire level Control constantly monitors sensor integrity. In the unlikely event of a sensor failure or remote electronic sensor module failure, the red LED is lit and indicates 25.5 mA (±1.5 mA) output.

An optional adjustable differential circuit (AD accessory) allows the user to select on and off at different level points for the control.

NOTE: If you suspect that a product is defective, contact the factory or the SOR® Representative in your area for a return authorization number (RMA). This product should only be installed by trained and competent personnel.
Pre-Installation I/O Test and Calibration

1. Remove instrument from shipping box and visually inspect for obvious physical damage. Report any shipping damage to the carrier. Report any internal discrepancies to the factory representative in your area. Record the serial number from the nameplate should conversation with the factory be necessary.

2. Remove housing cover.

3. Place instrument on an insulated surface or support so sensor does not touch a conductive surface.

4. Ensure area is safe and observe normal precautions for exposed and powered PC board.

5. Apply 12 - 28VDC loop power to + and - terminals, move failsafe select switch to LO position and observe the green LED. (See J).

6. Turn the LEVEL adjustment clockwise (up to 25 turns) to decrease the setpoint until the green LED turns off.

NOTE: Do not turn the LEVEL adjustment past 25 turns! Damage to the unit could result.

7. Turn the LEVEL adjustment one turn counterclockwise from the setpoint until the green LED lights. Next, slowly move a hand toward the probe to touch it. The green LED should stay on until the probe is touched. If the green LED turns off when the hand is near, turn the LEVEL adjustment counterclockwise so the LED remains lit until the hand touches the probe. Usually, 1-2 turns will locate the new setpoint.

8. When practical, use a small container of actual process material to calibrate the control. If the actual process vessel is metal, use a metal container (coffee can, etc.) and ground it to the instrument housing. If the actual process vessel is an insulator, such as, fiberglass, use a plastic container.

9. Immerse the sensor in the process material; the green LED should be off. If not, it may be necessary to decrease the setpoint.

10. To detect an interface, such as oil/water or foam/liquid, the lighter material must be on the sensor, then tuned out. Then adjust the setpoint to detect the heavier process material. (See A and B).

11. When the process material has a very low dielectric constant (such as mineral oil and butane) turn the level adjustment slowly to locate the setpoint, then 1/8 turn to 1/4 turns counterclockwise to precisely set.
Installation

This product must be installed with an explosion-proof breather vent per Agency requirements and the National Electric Code-Article 501, Section F, paragraph 3.

Standard Configuration is a 3/4 NPT(M) pipe nipple that threads into a 3/4” NPT(F) vessel nozzle or half coupling. Allow a 4-inch turn radius. (See C and D). Open tanks, vats, sumps or basins may require a locally made bracket mount similar to that shown in G.

Optional configuration is a raised face or flat face ANSI flange. See Form 1100 for selection. (See E and F).

Orientation. The control can be mounted in any position. Sensitivity is optimized when the greatest surface area of the sensor is parallel to the process level. (See C and E).

Placement and orientation of the sensor in a vessel is frequently determined by available nozzles. The sensor should be away from fill points to avoid false trips. The insulator bushing on the sensor should protrude a minimum of 1” from the inner wall of the vessel. The sensor must not touch any metal, nor should conductive process build-up be allowed to form a bridge between the sensor and a grounded metal tank wall.

If the sensor is a solid rod; it may be cut or bent for clearance or placement. Use a 3-inch radius should a bend be required. It is permissible to increase the sensor length by welding a length of identical rod to the supplied sensor. Recalibration is required if the probe length is changed.
Remote Cable Connection

Conduit must be installed between the sensor base and the electronics housing to provide a raceway for sensor extension cables. (See ⌜).

\[\text{Electrical power must be disconnected from explosion-proof models before the cover is removed. Failure to do so could result in severe personal injury or substantial property damage.} \]

Ensure that wiring conforms to all applicable local and national electrical codes and install unit(s) according to relevant national and local safety codes.

Fishing the Sensor Extension Cables

One three-conductor extension cable is required (SOR p/n 2924-113). Pull cable from the sensor base so that the free ends follow the fish through the conduit. (See ⌜).

Connections Inside Sensor Base

Inside the sensor base, a remote circuit board rests in a plastic holder. Attach the cable wires to the terminal block on the circuit board as follows:

Connections Inside Electronics Housing

Inside the electronics housing, unscrew the bracket holding the circuit board in place. Pull the board out of the holder. At the bottom of the circuit board, there is a connector labeled “+ - probe”. Attach the cable wires to the terminal block as shown above.

<table>
<thead>
<tr>
<th>Terminal Block</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>red wire</td>
</tr>
<tr>
<td>-</td>
<td>black wire</td>
</tr>
<tr>
<td>PROBE</td>
<td>white wire</td>
</tr>
</tbody>
</table>
Electrical Connection

Use 22 AWG shielded three-conductor cable to make all signal and power connections.

Ensure that wiring conforms to all applicable local and national electrical codes and install unit(s) according to relevant national and local safety codes.

SOR RF Probe Grounding Scheme

Critical Grounding Path = ● ● ● ● ● ● ● ● ●

IMPORTANT

Do not provide separate earth grounding for the process connection. This can create a parallel grounding circuit that will impair operation and calibration.
Sensor Monitor and Set Point Calibration

Electrical power must be disconnected from explosion proof models before the cover is removed. Failure to do so could result in severe personal injury or substantial property damage.

1. Make sure the power source is turned off.
2. Remove the housing cover.
3. Pull power and signal wires through the conduit connection and into the control housing.
4. Locate Loop Power Terminal Block on the control board. (See J). Terminals are labeled “+” and “-”. Connect power leads to the proper terminals.
5. Do not exceed the maximum loop resistance for the circuit. (See K).

Sensor Monitor Calibration (with probe disconnected)
1. Remove the housing cover.
2. Disconnect probe wire from the probe.
3. Turn ALARM adjustment counterclockwise until the red LED just lights. At this point, the loop current is stable at 25.5 mA ± 1.5 mA.
4. Reconnect the probe wire to the probe. At this point, the loop current returns to 7.5 mA ± 1.5 mA or 14.5 mA ± 2 mA.

Sensor Monitor Calibration (with probe attached)
1. Remove the housing cover.
2. Verify there is no process material on the probe.
3. Turn ALARM adjustment counterclockwise until the red LED just lights. At this point, the loop current is stable at 25.5 mA ± 1.5 mA. Turn the adjustment clockwise until the red LED turns off. Turn ALARM adjustment 1/2 turn further clockwise. At this point, the loop current is stable at 7.5 mA ± 1.5 mA or 14.5 mA ± 2 mA.

Units in Hazardous Locations – Prior to calibration, make sure that the work area is declassified before removing the explosion proof cover to calibrate the unit. Failure to do so could result in severe personal injury or substantial property damage.
Perform set point adjustment per previous instructions.

2 Move the process level above the setpoint.

3 Turn the adjustment on the AD (adjustable differential) circuit board fully counterclockwise.

4 Move the process level to the point where the control will change state.

5 Turn the adjustment on the AD circuit board clockwise carefully until green and yellow LED’s exchange states.

Current Output

<table>
<thead>
<tr>
<th>Green LED (7.5 mA)</th>
<th>Yellow LED (14.5 mA)</th>
<th>Red LED (25.5 mA)</th>
<th>Current Meter (+/-1.5A)</th>
<th>Sensor Status</th>
<th>Failsafe Switch Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>14.5 mA</td>
<td>Wet</td>
<td>LO</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td>7.5 mA</td>
<td>Dry</td>
<td>LO</td>
</tr>
<tr>
<td>on</td>
<td>off</td>
<td>off</td>
<td>7.5 mA</td>
<td>Wet</td>
<td>HI</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>off</td>
<td>14.5 mA</td>
<td>Dry</td>
<td>HI</td>
</tr>
<tr>
<td>off</td>
<td>on</td>
<td>on</td>
<td>25/5 mA</td>
<td>Failure</td>
<td>LO/Hi</td>
</tr>
</tbody>
</table>

Set Point Calibration

1 If the adjustable differential board is present (AD accessory), turn the adjustment fully clockwise.

2 Determine the desired FAILSAFE SELECT switch position for your application by using the Current Output Chart. (See L).

Failsafe LO Calibration

3 Move FAILSAFE SELECT switch on the control board to the LO position.

4 Move the process level to the point where switching is needed.

5 Turn the LEVEL adjustment so that the yellow LED just lights and the green LED is off. At this point, the loop current is stable at 14.5 mA ± 2 mA.

6 Lower the process level until the green LED lights, and the yellow LED is off. At this point, the loop current is stable at 7.5 mA ±1.5 mA.

Failsafe HI Calibration

3 Move FAILSAFE SELECT switch on the control board to the HI position.

4 Move the process level to the point where switching is needed.

5 Turn the LEVEL adjustment so that the green LED lights, and the yellow LED is off. At this point, the loop current is stable at 7.5 mA ±1.5 mA.

6 Lower the process level until the yellow LED lights, and the green LED is off. At this point, the loop current is stable at 14.5 mA ± 2 mA.

Adjustable Differential Set Up

1 Perform set point adjustment per previous instructions.

2 Move the process level above the setpoint.

3 Turn the adjustment on the AD (adjustable differential) circuit board fully counterclockwise.

4 Move the process level to the point where the control will change state.

5 Turn the adjustment on the AD circuit board clockwise carefully until green and yellow LED’s exchange states.
Sensor Replacement

1. Disconnect power to the unit.
2. Remove the housing cover.
3. Remove two screws holding bracket to plastic holder.
4. Slide out PC board to expose the sensor connection.
5. Disconnect the sensor wire.
6. Unscrew the sensor from the housing.
7. Apply thread sealant to the male threads of the new sensor.
8. Thread the new sensor into the bottom of the housing.
9. Connect the sensor wire to the “probe” connection on the circuit board.
10. Slide the PC board into the grooves in the plastic ring inside the housing.
11. Replace the two screws holding the bracket to the plastic holder. These screws are self-tapping. Do not over-tighten.
12. Reconnect power and replace the housing cover.

Replacement Sensors
See Form 1100 RF Catalog for replacement sensor model numbers

Circuit Board Replacement

1. Disconnect power to the unit.
2. Remove the housing cover.
3. Remove the two screws holding the bracket to the plastic holder.
4. Slide out PC board.
5. Disconnect power wiring, sensor wire, and the ground connection to the housing.
6. Connect the power wiring and sensor lead to the new board. Connect ground to the housing.
7. Slide the new board into the control housing.
8. Replace the two screws holding the bracket to the plastic holder. These screws are self-tapping. Do not over-tighten.
9. Reconnect power and replace the housing cover.
Troubleshooting

<table>
<thead>
<tr>
<th>Symptom/Problem</th>
<th>Possible Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
</table>
| No current in the loop | 1. Power supply turned off
2. Improperly wired terminal block
3. Broken power supply wire | 1. Check power supply source
2. Check terminal block wiring
3. Check loop wire integrity |
| No LED's lit | 1. Power supply turned off
2. Improperly wired terminal block
3. Broken power supply wire | 1. Check power supply source
2. Check terminal block wiring
3. Check loop wire integrity |
| Current is greater than 27mA | 1. Incorrectly wired circuit
2. Circuit malfunction | 1. Check current loop wiring
2. Replace the circuit board |
| Current is 8mA when 16mA is expected
or
Current is 16mA when 8mA is expected | 1. Failsafe Select switch is in the wrong position
2. Differential is applied (units with AD accessory only) | 1. Set failsafe select switch to proper position
2. Turn DIFFERENTIAL adjustment to get desired control |
| Current is not 8, 16, or 27mA or within tolerances | 1. Load exceeds maximum working load | 1. Check the load and correct it per page 7 |

NOTE: Agency certified units, (FM, CSA, IEC) must be returned to SOR for repairs.
Dimensions

Dimensions are for reference only. Contact the factory for certified drawings for a particular model number.

Diagram of dimensions and specifications

<table>
<thead>
<tr>
<th>PROCESS CONNECTION</th>
<th>DIM B</th>
<th>DIM C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 NPTM</td>
<td>94.1</td>
<td>262.4</td>
</tr>
<tr>
<td>1, 1-1/2, & 2 NPTM</td>
<td>97.3</td>
<td>265.6</td>
</tr>
<tr>
<td>FLANGED</td>
<td>158.5</td>
<td>326.8</td>
</tr>
<tr>
<td>STILLING WELL</td>
<td>120.0</td>
<td>288.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SENSOR STYLE</th>
<th>Ø D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARE</td>
<td>12.7</td>
</tr>
<tr>
<td>SHEATH</td>
<td>15.9</td>
</tr>
<tr>
<td>BARE WITH STILLING WELL</td>
<td>26.7</td>
</tr>
<tr>
<td>SHEATH WITH STILLING WELL</td>
<td>26.7</td>
</tr>
<tr>
<td>INACTIVE SHEATH</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Linear = mm/inches

Drawing 0390654
Dimensions

Dimensions are for reference only. Contact the factory for certified drawings for a particular model number.

<table>
<thead>
<tr>
<th>SENSOR STYLE</th>
<th>DIM D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARE</td>
<td>12.7</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>SHEATH</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
</tr>
<tr>
<td>BARE WITH STILLING WELL</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>SHEATH WITH STILLING WELL</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>INACTIVE SHEATH</td>
<td>15.9</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
</tr>
</tbody>
</table>

Linear = mm/inches

Drawing 0390653
Dimensions are for reference only. Contact the factory for certified drawings for a particular model number.

Linear = mm/inches

Drawing 0390653

Dimensions

MINIMUM CLEARANCE HOLE FOR INSTALLATION

54.9

2.16